Research of accelerator-driven systems at JINR and their development prospects

Walter Furman on the behalf of

"Energy and transmutation RAW" collaboration, Joint institute for nuclear research, 141980 Dubna, Russia <u>furman@dubna.ru</u>

"Energy and transmutation RAW" collaboration

J.Adam, A.Baldin, A.Berlev, W.Furman, N.Gundorin, B.Gus'kov, Zh.Hushvaktov, M.Kadykov, Yu.Kopatch, E.Kostyuhov, I.Kudashkin, A.Makan'kin, I.Mar'in, A.Polansky, V.Pronskikh, A.Rogov, V.Schegolev, A.Solnyshkin, V.Tsupko-Sitnikov, S.Tyutyunnikov, A.Vishnevsky, N.Vladimirova, I.Zavorka

Joint Institute for Nuclear Research, Dubna, Russia

M.Artyushenko, V.Sotnikov, V.Voronko KIPT, Kharkov, Ukraine

V.Chilap, A.Chinenov, B.Dubinkin, B.Fonarev, M.Galanin, V.Kolesnikov, S.Solodchenkova CPTP «Atomenergomash», Moscow, Russia

A.Khilmanovich, B.Marcynkevich *Stepanov IP, Minsk, Belarus* K. Husak, S.Korneev, A.Potapenko, A.Safronova, I.Zhuk

JIENR Sosny near Minsk, Belarus

M.Suchopar, O.Svoboda, J.Vrzalova, V.Wagner INP, Rez near Praha, Czech Republic

L. Kostov, Ch. Stoyanov, P.Zhivkov Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria M.Bielevicz, S.Kilim, M.Shuta, E.Strugalska-Gola, A.Wojciechowski, National Centre for Nuclear Research, Otwock-Swerk, Poland S.Kislitsin, T.Kvochkina, S. Zhdanov Institute of Nuclear Physics NNC RK, Almaty, Kazakhstan.

M. Manolopoulou Aristotle Uni-Thessaloniki, Thessaloniki, Greece W.Westmeier

Gesellschaft for Kernspektrometrie, Germany R.S.Hashemi-Nezhad

School of Physics, University of Sydney, Australia

PAC NP, June 20 - 21, 2013

Research of accelerator-driven systems at JINR and their development prospects

Content

- Introduction
- Main results of "E&T RAW" project for 2011-2013
 - Discussion of results
 - Prospects for 2014-2016
 - Conclusion

<u>Introduction</u>

- The key problem of global atomic energy is effective utilization of spent nuclear fuel (SNF).
- One of the ways to solve this problem considered seriously last ten years is to use the Accelerator Driven subcritical Systems (ADS).
- State programs develop ADS for transmutation of highly toxic, long lived components of SNF currently adopted in Europe, China, India and South Korea.
- ADS are much more safe than any reactors exploiting chain reaction of nuclear fission (k_{eff} <1 in all in all operating modes).

- But practical use of ADS for utilization of SNF presents many technological challenges.
- First of all is to create a reliable and highly effective accelerator MW power
- No less serious problem finding and licensing of radiation-resistant materials for the active core (ADS target) and cooling systems.
- So even the creation of the first full scale prototype ADS will take at least a decade of hard work (example MYRRHA project)

- But ADS study has more than 50 years of history.
- In particular first pioneering experimental works in this direction were performed at JINR in the 60-70s on Synchrocyclotron (*Vassil'kov, Gol'dansky, Pokotilovsky*) and Synchrophasotron (*Tolstov, Yurevich, Krivopustov et all*).
- Beside that in the same time extensive theoretical study of different kinds of ADS were implemented by *Barashenkov, Toneev and their colleagues.*
- May be conscious, but rather as a practical matter they studied deeply subcritical system of natural or depleted uranium irradiated by GeV protons or deuterons.

Target assembly of experiment by R. Vassil'kov et al (published 1978)

Dimensions 56x56x64cm

- No moderator
- Special geometry assymmetric beam input →
 - 7 tons effective mass
- 10 cm lead blanket
- Rather small (~10%) neutron leakage
- Main task Pu production

Natural U $N_f = 18.5 \pm 1.7$ $N_{Pu} = 46 \pm 4$ BPG = 7.4 ± 0.7

Depleted U Nf = 13.7 ± 1.2 N_{Pu}= 38 ± 1.2 BPG = 5.7 ± 0.5

Ep = 0.66 *GeV*

N_f axial distributions for different radial channels

- In this practically "quasi-infinite" deep subcritical active core (DS AC) maximally hard neutron spectrum has been realized with rather low k_{eff} ~ 0.4
- Such neutron spectrum should be rather effective for burning (via (n,f)- reaction) of threshold minor actinides and transmutation of long lived fission products (via (n,xn)reactions) from spent nuclear fuel (SNF) composition

• What is known additionally about the characteristics of the neutron field of similar ADS to higher incident energy?

For ø20x60cm lead target irradiated by GeV deuterons from V. Yurevich et al (2006) TOF study of spectral characteristics of leaked neutrons

Ed	<i><en></en></i>	En kin	En kin/E _d	Ŵ	W/E_d
GeV	MeV	MeV	%	MeV	%
1.03	6.5	162	16	336	32.6
1.98	7.9	460	23	870	43.9
3.76	10.4	1025	27	1717	45.7

- Very hard neutron spectrum < En > ® (6.5 , 10.4) MeV
- W/E_d is a share of deuteron energy E_d expended in the formation of neutrons. It grows with incident energy !

For ø20x60cm lead target irradiated by GeV protons from V. Yurevich et al (2006)

Total neutron yield Y and partial yield Y₂₀ (for En > 20 MeV)

E _p ,	Neutron	Ratio,	
GeV	one prot	%	
	Y	Y ₂₀	Y/Y ₂₀
0.994	24.1±2.9	2.1±0.4	8.8±2.5
2.0	44.4±5.3	4.7±0.8	10.6±3.0

• Share of neutron energy spectrum with E_n>20MeV is 10%

<u>Motivation</u>

- So it is very important to study ADS with quasi-infinite deep subcritical core for incident energy above threshold of fast fragmentation (~ 1.5 GeV), i.e. in conditions when total neutron multiplicity (and integral fission yield respectively) should essentially increase
- An investigation of this problem is just an aim of JINR project "Energy and Transmutation Radioactive Waistes" ("E&T RAW") adopted for realization during 2011-2016 on the basis deuteron (proton) beam of JINR NUCLOTRON in incident energy range 1- 10 GeV/N and natural (depleted) massive uranium targets available at JINR .
- The project supported by grants of plenipotentiaries of Belarus, Bulgaria, Kazakhstan, Poland and Czech Republic

Main goals of E&T – RAW project are

- to study basis characteristics of neutron fields inside quasi-infinite deep subcritical AC, spatial distributions of the core nuclei fission, ²³⁹Pu production and transmutation reaction rates for long lived minor actinides and fission products in hard neutron spectrum
- As well as to define optimal energy of incident beam for transmutation RAW and simultaneous energy production.

• For full scale modeling of the considered ADS at JINR there is the quasi-infinite (~20 tones) AC – Big depleted URANium target assemly (BURAN) and high energy beams of super conducting accelerator NUCLOTRON.

• As a preparatory stage for main experiments with **BURAN** there was used an intermediate size massive (512 kg) target assembly (TA) **QUINTA** from natural metallic uranium.

• TA QUINTA models the central part of TA BURAN and allows to work out and to test the measurement and data analysis procedures for main experiments.

Quasi-infinite depleted uranium target (BURAN) with replacement central zone

Mass of uranium	– 19.5 т .	Materials of central zone – U, Th, Pb.
Diameter	– 1,2 м.	Diameter of central zone – 0,2 м.
Length	–1м.	

Quasi-infinite depleted uranium target (BURAN) with replacement central zone

Longitudinal section of TA BURAN together with central zone and detector channels

Front view photo

Rear view photo

Target assembly "Quinta" at the irradiation position (March 2011)

TA QUINTA with lead blanket

PAC NP, June 20 -21, 2013

Results of experiments 2011-2013

• The main results of measurements carried out with TA QUINTA during 2011-2013 and obtained data analysis will be presented below

PAC NP, June 20 - 21, 2013

TA QUINTA ON IRRADIATION POSITION (March 2013)

VERTICAL AXIAL CROSS-SECTIONAL VIEW OF THE TARGET

- Spatial distributions of neutron fluxes and reactions

 (n,f), (n,y), (n,xn) studied with aid AI foils, ^{nat}U convertors (Ø 10 мм, thickness 1 мм), located on six detector plates in positions of R = 0; 4; 8 и 12 см from beam axis as well ^{nat}U and ²⁰⁹Bi thin convertors on the surface of the lead blanket
- On some of these plates there were the samples of Th, minor actinides and long lived fission products.

Gamma-activation method for study of 239Pu production and ^{nat}U fission

Plutonium production

²³⁸U(n,γ)²³⁹U (23,54 min) β- \rightarrow ²³⁹Np (2,36 days) β- \rightarrow ²³⁹Pu

277,6 keV g-line from ²³⁹Np

g- detector calibrated with ⁶⁰Co, ⁵⁴Mn, ⁵⁷Co, ⁸⁸Y, ¹⁰⁹Cd, ¹¹³Sn, ¹³³Ba, ¹³⁷Cs, ¹³⁹Ce, ¹⁵²Eu, ²²⁸Th, ²²⁶Ra standard sources.

Number of fissions in the place of measurements defines by averaging of following fission product yields:

⁹⁷Zr (5.42%), ¹³¹I (3.64%), ¹³³I (6.39%), ¹⁴³Ce (4.26%)

In brackets there are mean cumulative FP yields

Spatial distributions of ^{nat}U fission $N_f(R,Z)$ and ^{239}Pu production $N_{Pu}(R,Z)$ within TA QUINTA (in units – per 1 deuteron/ 1 g 238U/ 1 GeV)

PAC NP, June 20 -21, 2013

E _d	1 GeV	2 GeV	4 GeV	6 GeV	8 GeV			
Date	Total number of ^{nat} U fission in TA QUINTA N _f (tot)							
03.11		(8.8±0.4)	(8.8±0.4)	(8.3±0.4)				
No Pb		±1.0	±1.0	±0.9				
12.11	(10.6±0.5) ±1.1		(8.5±0.4) ±1.0					
03.12 (SSTD)	8.9 ±1.5		8.1 ±1.5		9.2 ±1.6			
03.12	(10.2±0.5)		(9.6±0.4)		(9.4±0.5)			
	±1.1		±1.0		±1.0			
12.12		(10.5±0.5)	(10.3±0.5)		(9.3±0.5)			
		±1.1	±1.1		±1.0			
Calc.	9,5	9,1	8.3	7,7	7,3			
	Total number of produced ²³⁹ Pu nuclei							
03.11		(7.0±0.3)	(7.2±0.4)	(6.9±0.3)				
No Pb		±0.8	±0.8	±0.7				
12.11	(11.8±0.6)		(10.8±0.5)					
	±1.2		±1.1					
03.12	(11.3±0.6)		(11.0±0.5)		(10.2±0.5)			
	±1.2		±1.1		±1.1			
12.12		(12.5 <i>±</i> 0.7)	(12.2±0.7)		(10.3 <i>±</i> 0.5)			
		±1.3	±1.3		±1.1			
Calc.	12	11.8	11,6	10.8	9,2			

Total numbers of fission N_f(tot) and produced ²³⁹Pu nuclei ®

experiment v.s. calculation

Reaction rates (atom⁻¹, d⁻¹, * [E-27]) for Th sample

Reaction products	Ed = 2 GeV	Ed = 4 GeV	Ed = 6 GeV	
	Reza et al.	Adam et al.	Adam et al.	
Th(n,g) <mark>Pa-233</mark>	76.9(39)	142(4)	176(3)	
Th(n,2n) Th-231		51.4(15)	71.2(23)	
Th(n,6n)Th-227		3.8(15)	4.4(4)	
Th(n,p6n) <mark>Ac-226</mark>	1.13(8)	2.98(21)	3.41(11)	
Th(n,p8n) <mark>Ac-224</mark>	0.62(5)	1.37(6)	3.1(3)	
Th(n,fission)	54.4(40)	118(10)	159(7)	
Th(n,) <mark>Zr-97</mark>	1.9(9)	3.77(14)	5.2(17)	
Th(n,) <mark>Mo-99</mark>	1.99(11)	5.14(6)	5.75(18)	
Th(n,) I-131	1.15(14)	1.92(8)	2.26(6)	
Th(n,) I-133	1.04(6)	2.44(5)	3.12(5)	
Th(n,)Ce-143	1.06(8)	2.61(5)	3.25(6)	
Th(n, <mark>spallation</mark>)	17.9(25)	-	194(30)	

Incineration of the threshold minor actinide from SNF example of ²³⁷Np

Typical calculated neutron spectra $(n/d/\Delta E_n)$ at positions R= 0 and 12 cm, Z=64,5 cm (fourth plate)

PAC NP, June 20 -21, 2013

Convolution of cross-sections (n, γ) , (n, f) and (n, 2n) with neutron spectra at position R=12 cm in the fourth plate

PAC NP, June 20 - 21, 2013

Spatial distributions of spectral indices SI (n,γ)/(n,f)

- Spectral indices are relative values. Their uncertainties are much smaller than for each N_(n,2n) (R,Z), N_f (R,Z) or N_g (R,Z) values. SI do not depend on beam intensity normalization
- Neutron spectrum becomes "softer" with increase the distance from beam axis

Comparison of experimental and calculated spectral indices SI $(n,\gamma)/(n,f)$ in dependence on deuteron energy

- Share ratios of the neutron spectrum in the energy ranges En < 1.2 MeV and 1.5 Mev < En< 20MeV remain approximately constant with increase of incident energy
- But what about En > 20 MeV ?

Convolution of neutron spectra with $\sigma(n,f)$ for ^{nat.}U and ²⁰⁹Bi at position R=12 cm in the fourth plate (Z=64,5 cm)

PAC NP, June 20 -21, 2013

Ratios of ^{nat}U/²⁰⁹Bi (n,f)-reaction rates (black – inside of TA QUINTA, red – on the surface)

Energy spectrum of leakage neutrons becomes more "harder" with increase of deuteron energy !

Neutron spectrum modified to fit experimental ratio ^{nat}U/²⁰⁹Bi (n,f)-reaction rates at QUINTA surface

PAC NP, June 20 -21, 2013

Spectral characteristics of leakage neutrons on QUINTA surface

E _d , GeV	1,32	2,0	4,0	8,0
Total numbers of leaked neutrons N, n/(d·GeV)				
N _{En>0,1 MeV} (exp),	46,8	49,1	51,0	51,8
N _{En>20 MeV} (exp))	2,97	3,16	3,76	6,23
N _{total} (calc. MARS-5, FNAL)	49,2	47,9	42,8	39,1
N _{En>20 MeV} (calc. MARS-5, FNAL)	0,68	0,70	0,50	0,62
Ratios N _{En>20 MeV} / N _{total} , %				
N _{En>20 MeV} (calc) / N _{total} (calc)	1,38	1,46	1,17	1,60
N _{En>20 MeV} (exp) / N _{En>0,1 MeV} (exp)	6,35	6,43	7,38	12,0

Beam power gain vs. size of AC

- Beam power gain ($BPG = E_{release}/E_{beam}$) is key characteristics of any ADS. Its value depends mainly on the total number of fissions within AC and determines practical applicability of given ADS.
- Minimal value of BPG providing a zero energy balance of whole ADS operation is in better case BPG ≈ 9
- TA QUINTA shows BPG ≈ 2. This is due its relatively small size of (R ≈ 15 cm) and as consequence the large neutron leakage ≈ 80%.
- But BPG as function of radius (size) AC does not show saturation not only in TA QUINTA but even in ~ 3 tons ^{nat}U TA studied in experiment by Vassil'kov, Gol'dansky et al. (1978).

Integrated numbers of fission up to given R (a.u., blue - Z = 245 mm, Z = 655 mm – lilac [Vassilkov et al], yellow – Z= 52 mm and light blue – Z= 65 mm QUINTA)

Beam power gain vs. incident energy

- In experiment of Vassilkov et al. BPG ≈ 7.4 for ^{nat}U and ≈ 6 for ^{depl}U (Ep=0.66 GeV, uranium mass 3.5 tons, neutron leakage ~ 10%).
- This result was not reproduced by any calculations the difference with the experiment up to two times.
- Moreover calculations by Batyaev et al. (2008) for 30 t of deplU target gives BPG ≈ 3 for incident proton energy range from 1 to 10 GeV (Vassil'kov&Goldansky result BPG ≈ 6).
- Similar results were obtained in our calculations by MCNP and MARS codes for QI TA BURAN - BPG ≈ 3.8

Modeling of TA BURAN \rightarrow (n,f), (n, \mathbf{x}) and M^{tot} linear growth with $E_{d(p)}$ but BPG ?!

	Protons			Deuterons		
E _{p(d)} , GeV	1	6	12	1	6	12
Total neutron multiplicity	126	770	1450	125	794	1455
Number N (n,γ)	70	440	826	70	452	837
Number N(n,f)	16	100	183	15	100	183
$K_{BPG} = E_{tot}/E_{p(d)}$	3.82	3.75	3.5	3.82	3.85	3.55

PAC NP, June 20 - 21, 2013

Beam power gain vs. incident energy

- Small calculated values of BPG (total number of fission in AC) may be associated with a significant underestimation in all used codes of the proportion of high-energy neutron spectrum share discussed above.
- Moreover as our measurements of ratios ²⁰⁹Bi/^{nat}U fission rates with TA QUINTA show energy spectrum of leakage neutrons becomes more "hard" with increase of incident energy.

Beam power gain vs. incident energy

- Such tendency in neutron spectra provides a chance to get an additional increase of BPG for higher incident energy.
- But only experiments with QI TA BURAN are able to clear out of real dependence of BPG on incident energy and to establish its absolute value.
- This is the subject of "E&T RAW" collaboration work for 2014-2016

Main goals of experiments with TA BURAN for 2014-2016

- Investigation of BPG dependence on energy of incident particles (protons or deuterons) to determine its optimal value for this type of particle.
- Determination of reaction rates of long-lived isotopes of processing of spent nuclear fuel.
- Getting a complete set of experimental data required for verification and modification of existing theoretical models and transport codes that can reliably describe and predict the properties of accelerator driven systems with QI active cores.

<u>Conclusion</u>

- The project "E&T RAW" aimed at study of ADS with deep subcritical AC suitable for utilization of SNF is implemented at JINR on base of NUCLOTRON beams and massive uranium targets QUINTA and BURAN
- The measurements performed in 2011-2013 shown that numbers of core nuclei fission and ²³⁹Pu production grows linearly with increase energy of incident particles
- Energy spectrum of neutrons leaking TA QUINTA surface becomes harder with grows of incident particle energy

<u>Conclusion(cont.)</u>

- Calculations are not able to reproduce high energy (E_n >20 MeV) tail of neutron spectrum inside and outside of TA QUINTA which is very important when size of AC increase
- Experiments with quasi infinite AC BURAN should give decisive information on practical applicability studied ADS for utilization of SNF with simultaneous energy production
- In any case realization of scientific program with TA BURAN provides valuable benchmark for presently used INC models and transport codes

Thanks for your attention

